The power rule is a formula used in calculus to differentiate expressions of the form ( f(x) = x^n ), where ( n ) is any real number. The power rule states that the derivative of ( x^n ) is ( nx^{n-1} ).
This rule is very useful for finding the derivative of polynomial functions, as it allows us to easily differentiate terms that involve powers of ( x ). By repeatedly applying the power rule, we can find the derivative of a polynomial function by differentiating each term individually and then combining the results.
For example, if we have the function ( f(x) = 3x^4 - 2x^2 + 5x ), we can find its derivative by applying the power rule to each term: ( f'(x) = 12x^3 - 4x + 5 ).
Overall, the power rule simplifies the process of finding derivatives of polynomial functions and is an important tool in calculus.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page